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Fixed-interval schedule performance is characterized by high levels of variability. Responding is absent
at the onset of the interval and gradually increases in frequency until reinforcer delivery. Measures
of behavior also vary drastically and unpredictably between successive intervals. Recent advances in
the study of nonlinear dynamics have allowed researchers to study irregular and unpredictable behavior
in a number of fields. This paper reviews several concepts and techniques from nonlinear dynamics
and examines their utility in predicting the behavior of pigeons responding to a fixed-interval schedule
of reinforcement. The analysis provided fairly accurate a priori accounts of response rates, accounting
for 92.8% of the variance when predicting response rate 1 second in the future and 64% of the variance
when predicting response rates for each second over the entire next interreinforcer interval. The
nonlinear dynamics account suggests that even the "noisiest" behavior might be the product of purely
deterministic mechanisms.
Key zords: nonlinear dynamics, fixed-interval schedule, response variability, predictability, beha,v-
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Nonlinear dynamical systems theory (com-
monly known as chaos theory) has recently
gained much publicity and has been used to
further understanding of phenomena in many
different fields (Gleick, 1987). Nonlinear dy-
namics has distinguished itself by demonstrat-
ing that turbulent, chaotic behavior can be pro-
duced by very simple, completely deterministic
mechanisms. Nonlinear dynamics also offers
procedures that can sometimes identify the un-
derlying order in very "noisy" phenomena.
This paper introduces several concepts and
techniques from nonlinear dynamics and ex-
amines their utility in understanding a classic
problem in behavior analysis, that of charac-
terizing performance on a fixed-interval (FI)
schedule of reinforcement.

THE BASIC PHENOMENON
The FI schedule of reinforcement arranges

a reinforcer for the first response following the
passage of a specified period of time. Although
only one response is required in each interval,
the schedule typically generates many re-
sponses that occur in a highly stereotyped pat-
tern. Skinner (1938) suggested that the pattern
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involves the organization of the following four
types of variability.

1. Between-session variability: Response
rates and other measures of performance, com-
puted over the entire session, oscillate between
sessions.

2. Between-interval variability: Response
rates and other measures of behavior, com-
puted over each interval, fluctuate from inter-
val to interval.

3. Within-interval variability: Responding
is typically absent at the onset of the interval
and gradually increases in frequency until re-
inforcer delivery.

4. Response clustering: Individual re-
sponses tend to occur in groups of two or three
responses.
The first and fourth dynamic effects have

traditionally been viewed as characteristic of
all schedules (Zeiler, 1977). The second- and
third-order deviations, however, have been
viewed as truly characteristic of FI schedules.
Within-interval variability is the more com-
monly known effect. The conventional descrip-
tion holds that there is a pause at the beginning
of the interval that is followed by an acceler-
ation in responding to a high terminal rate.
The terminal value is sometimes described as
constant (e.g., Dews, 1970, 1978). This gen-
eral pattern of responding is maintained across
consecutive intervals. However, the duration
of the postreinforcement pause, the speed of
response-rate acceleration, the terminal re-
sponse rate, and the total number of responses
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emitted during the interval can all change
drastically between intervals. The most com-
mon description of this between-interval vari-
ability is derived from Skinner (1938) and
Ferster and Skinner (1957). These researchers
noticed that there was a general tendency for
intervals with many responses to be followed
by intervals with few responses and for inter-
vals with few responses to be followed by in-
tervals with many responses. The same type
of cyclic pattern is also said to occur with du-
ration of the postreinforcement pause (Shull,
1971). However, interval-to-interval dynamics
are not that simple. Both response number and
postreinforcement-pause duration increase and
decrease irregularly and assume many high,
low, and intermediate values (Dews, 1970;
Gentry & Marr, 1982; Randolph & Sewell,
1968; Shull, 1971; Wearden, 1979; Wearden
& Lowe, 1983). No consistent relationship be-
tween measures of responding in successive
intervals has yet been found.

THE TRADITIONAL APPROACH TO
DESCRIBING VARIABILITY

Behavior analysts have tended to regard ir-
regular or highly variable behavior as a prob-
lem of experimental control (Sidman, 1960).
It has been assumed that a finite number of
variables produces all observed variability. It
has also been assumed that the important in-
dependent variables produce dynamics that are
inherently stable (i.e., in the absence of dis-
turbance, the dependent measures tend toward
a stable equilibrium). The behavior analyst
must identify those independent variables and
control their effects through experimental ma-
nipulation. Typically, variables are studied in
isolation, and their effects are explored over a
range of values. If the dependent measures
continue to fluctuate, this can only mean that
external forces from some unknown source of
control or some poorly controlled extraneous
variable is still operating. In this event, new
candidates are selected and experimentally
controlled. The procedure is repeated until
variability is minimized. The ultimate goal of
this approach involves constructing a list of the
important variables affecting performance and
then describing how the variables act singly
and in concert.
Many potential controlling variables have

been proposed. For instance, the duration of

the interreinforcer interval (Killeen, 1975;
Neuringer & Schneider, 1968), temporal dis-
crimination (Dews, 1966, 1978; Ferster &
Skinner, 1957; Staddon, 1977), and the num-
ber of responses emitted previously within the
current interval (Ferster & Skinner, 1957; Ro-
senberg, 1986; Shull & Brownstein, 1970) have
been suggested as variables that control within-
interval dynamics. The number of responses
emitted during the previous interval (Herrn-
stein & Morse, 1958; Zeiler, 1977) and the
amount of time spent responding during the
previous interval (Shull, 1971) have been of-
fered as variables controlling between-interval
variability. This list of variables is not ex-
haustive (more comprehensive reviews can be
found in Dews, 1970; Zeiler, 1977, 1979).
However, neither the independent effects of
the variables included in this list nor the vari-
ables included in the full list can account for
a large percentage of the variance (Gentry &
Marr, 1982). It can be inferred that this ap-
proach has not yet led to a complete list of the
independent variables. That is, not all of the
variability has been accounted for. In fact, there
is not even agreement that all of the suggested
variables are relevant. The search for the list
of variables controlling Fl performance seems
to have lost momentum. The most common
conclusion about the factors controlling FI per-
formance is that this is a complex phenome-
non.

THE NONLINEAR SYSTEMS
APPROACH

The problems experienced in behavior anal-
ysis have also been experienced in other dis-
ciplines. During the past 20 years, an alter-
native research approach known as nonlinear
dynamical systems theory has been emerging.
Like the analysis and synthesis approach de-
scribed above, this strategy is deterministic. It
views behavior as being caused by the com-
bined influence of a set of controlling variables.
But these variables do not work the same way
as standard independent variables. Rather, each
controlling variable in a nonlinear world af-
fects all other variables. If the value of one
variable is changed, the effects of all other
variables subsequently change. Thus, the ef-
fects of each variable depend upon the simul-
taneous states of all other variables. The con-
trolling variables in a nonlinear world are better
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known as state variables. Nonlinear dynamics
suggests that, in principle, a complete descrip-
tion of any given phenomenon can be attained
through a complete understanding of how each
state variable acts alone and in concert. How-
ever, nonlinear dynamics suggests that this is
impossible for all but the simplest phenomena.
For the analysis and synthesis approach to
succeed, all independent variables must be
identified and measured, and their interactions
understood. In most systems, as is obviously
true with human and animal behavior, it has
proven difficult even to identify all of the rel-
evant variables, much less measure or under-
stand their effects singly and in concert.

Further, nonlinear dynamics implies that
studying each factor in isolation may not lead
to useful knowledge. The effects of variations
of a single variable may be different in the
context of a system than when it is altered in
isolation. The same variable whose alternation
produced a smooth linear function when stud-
ied in isolation might produce wild, almost
discontinuous behavior when embedded with
other variables. Thus, experimenters are left
with an infinitely complicated system that re-
quires them simultaneously to understand all
potential factors or else face the possibility that
all knowledge of individual variables may be
suspect. Nonlinear dynamics gives the re-
searcher a tool for exploring how multiple
variables might interact without identifying and
measuring each of the relevant variables
(Packard, Crutchfield, Farmer, & Shaw, 1980;
Takens, 1981). Thus, it provides the possi-
bility for understanding the system as a whole
even if the component parts have not been
identified. If the functioning of the system can
be understood, further analysis can reveal how
certain variables may be altered to move the
whole system.

A HYPOTHETICAL SYSTEM
In order to demonstrate how perfectly un-

derstood state variables might have chaotic ef-
fects when embedded in a system of interacting
independent variables, a hypothetical system
will be explored. For this example, it will be
assumed that the variables influencing FI per-
formance are known and understood. If this
were true, a system of equations that describe
behavior could be developed. The following
set of equations is representative of what such

a system might look like. It is not intended to
model accurately the actual mechanisms that
produce observable behavior; rather, it is in-
tended to serve as an example of how such a
system could function and what kinds of be-
havior it might produce.

In this model, within- and between-interval
dynamics are controlled by separate but related
sources of control. Palya and Bevins (1990)
suggested that within-interval variability is the
joint product of competing tendencies to ap-
proach food and to engage in other activities.
They suggested that the period of responding
is related to the reinforcing consequences of
food delivery. The probability of approaching
and emitting food-related behavior gradually
increases over the interval. In the current
model, it is assumed that changes in response
probability are proportional to the product of
its current strength and the difference between
it and the maximal probability of responding.
Thus,

ASr = aSr(S. - Si), (1)
where ASr is the change in response strength,
a is the constant of proportionality, S, is the
current strength of responding, and S,ax is the
maximum response strength for that interval.
Integrating this equation yields

SI = S1- (2)
r1be(-cs--xwx) X

where b is a constant related to the strength
of responding at the onset of the interval, c is
a constant related to the rate of growth, and t
is the elapsed time. Equation 2 describes the
current strength of responding at any time t.
It produces an S-shaped function. That is, re-
sponse strength is bounded; it has a minimum
value close to zero and a maximum value close
to the value of S,,.. During the typical inter-
val, response strength is near zero at the onset
of the interval, and increases over the course
of the interval. At first, response strength in-
creases slowly, but as it increases, the rate of
change also rises. Then, as response strength
approaches its maximum, the rate of growth
again slows.
The period of pausing is related to the re-

inforcing consequences of alternative behavior.
The organism has a higher tendency to emit
alternative behavior during the portion of the
interval in which the target behavior is un-
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likely to produce food. The strength of the
tendency to emit alternative behavior gradu-
ally declines over the interval. The rate of de-
cline is proportional to the product of its cur-
rent strength and the difference between it and
the maximal strength of alternative respond-
ing. Thus,

ASa = dSa(Smax - Sa), (3)
where ASa is the change in response strength,
d is the constant of proportionality, Sa is the
current strength of responding, and Sa. is the
maximum alternative-response strength for
that interval. Integrating this equation yields

Sa Sa, 4~a 1- fe(gs't-X (4)

wheref is a constant related to the strength of
alternative behavior at the onset of each in-
terval and g is a constant related to the rate of
decrease. Equation 4 describes the current
strength of alternative responding at any time
t. This equation also produces an S-shaped
function (although inverted). However, in this
equation response strength decreases. Early in
the interval, response strength is close to its
maximum. At first, it decreases slowly. As re-
sponse strength decreases, the rate of change
initially increases. As response strength ap-
proaches zero, the rate of decline slows.

Behavior during previous intervals deter-
mines the maximum response strength and
maximum strength of alternative responding
during subsequent intervals. The results from
numerous studies suggest that the sequential
dependencies involve more than performance
in the immediately preceding interval (e.g.,
Dews, 1970; Gentry & Marr, 1982; Wearden,
1979). Dews (1970) and Zeiler (1977) sug-
gested that the sequential dependencies may
be produced by the behavior during groups of
previous intervals. The current model embod-
ies this suggestion and uses three variables that
are related to prior responding. Response
strength is determined by (a) the cumulative
number of responses made within the session,
(b) the mean response rate over the last three
intervals, and (c) the number of reinforcers
received during the session. In order to model
the cyclic nature of between-interval variabil-
ity, performance is assumed to fluctuate around
a sine wave. The three variables act together
to move responding over the sine function.

These three variables combine to form

S, = 1 -Sa
=j{sin(kw(MI + SI + T(R))} + 1,

(5)
where T(R) =f(R + m + n) and

r1, 0+o(m +n) <R
-(R J <m+0(m+n), o=0,1,2,...n,mR ,m+o(m+n)<R

<(o+ 1)(m+n), o=0,1,2,...,
(6)

and where j, k, 1, m, and n are constants, MI
is the mean response strength over the last
three intervals, SI is the sum of all previous
response strengths in each interval, T(R) is a
square wave function that relates performance
to the number of reinforcers delivered during
the session, and R is the cumulative number
of reinforcers delivered. The variable o is an
integer tracking cycles of four food presenta-
tions.

Equation 5 can show nonlinear effects.
Changing the values of any of the constants
can alter the functioning of the system. If the
three variables were separated and each had
exclusive control, all three would produce very
stable behavior. A sine function with either
mean response rate or the cumulative number
of responses as the only variable would pro-
duce stable behavior. That is, every interval
would contain a postreinforcement pause with
the same duration, the same number of re-
sponses, and the same terminal response rate.
If the cumulative number of reinforcers were
the only variable, the equations would produce
an alternation among five different rates.
Changing constantsj, k, and I would alter the
specific points, but the stability would be main-
tained. Combining the three variables (even
with a simple additive relationship) alters the
functioning of all three. In combination, they
produce very wild behavior. The current state
of any one affects the future output of the
others.

Observed behavior within each interval is a
joint function of the strength of food-related
behavior and the strength of alternative re-
sponding:

B = (Sr - Sa)P, (7)
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Fig. 1. Sample cumulative record of responding to an FI 20-s schedule generated by the hypothetical system. The
upper panel displays 21 complete interreinforcer intervals and reveals clear between-interval dynamics. The lower
panel shows five of the intervals in greater detail.

where B is a measurable response rate and p
is a constant that transforms response strength
into a measurable quantity. Equation 7 com-
bines the opposing tendencies to emit the target
response and to engage in other behavior. At
the onset of the typical interval, Sa is relatively
high and S, is relatively low. Therefore, B is
below zero. Over the course of the interval, Sa
decreases and S, increases. B increases grad-
ually. The part of the interval with positive
values represents observable food-related be-
havior.

Equation 7 produces performance that is
similar to that emitted by pigeons receiving
reinforcement periodically. Response rates for
each second were computed for 300 consecu-
tive FT 20-s intervals. The values of all con-

stants used to produce these response rates are
included in Appendix 1. Each interval is com-
posed of a period of pausing and a period of
responding. Response rates gradually accel-
erate over the course of the interval. A sample
cumulative record (Figure 1) reveals the char-
acteristic scallop shape and large interval-to-
interval dynamics.

Between- and within-interval variability can
also be assessed with several quantitative pro-
cedures. Traditionally, within-interval dy-
namics has been measured by computing an
index of curvature (Fry, Kelleher, & Cook,
1960). This measure generates a single value
that designates the degree to which responding
is evenly distributed throughout the interval.
The measure is positive when accelerated re-
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sponding is present. It is zero when response
rate remains constant over the duration of the
interval. It is negative when response rate de-
clines. The index of curvature computed for
the output of Equation 5 was 0.374, which
indicates accelerated responding and is similar
to those found in previous reports (e.g., Palya
& Bevins, 1990; Gentry, Weiss, & Laties,
1983).

Between-interval dynamics has been mea-
sured with two statistics: the runs test (Siegel,
1956) and Lag 1 autocorrelations (Weiss, La-
ties, Siegel, & Goldstein, 1966). The runs test
can measure whether behavior changes rela-
tive to performance in the immediately pre-
ceding interval. Thus, intervals are scored as
to whether the measures of performance were
higher or lower than in the preceding interval.
The statistic can detect two types of deviations
from chance: (a) A positive score indicates more
alternation between higher and lower scores
that would be expected from random processes,
and (b) a negative score indicates less alter-
nation than expected by chance. A score near
zero indicates about the same amount of al-
ternation as expected from chance. A runs test
was computed for both postreinforcement pause
(Z = 3.4, p < .05) and response number (Z
= 3.3, p < .05). Both values were statistically
significant and were similar to those found in
previous research (e.g., Dews, 1970; Shull,
1971; Wearden, 1979).
The second procedure, Lag 1 autocorrela-

tions (Weiss et al., 1966), provides a measure
of absolute effects. This statistic computes a
correlation between response rate (or any other
measure of behavior) in one interval and that
same measure during the next interval. The
statistic measures both strength and direction
of periodicity. The Lag 1 autocorrelation com-
puted from the model were also similar to pre-
vious results (e.g., Gentry & Marr, 1982; Shull,
1971; Wearden, 1979; Wearden & Lowe,
1983). A correlation coefficient of .01 was ob-
tained with postreinforcement pause duration.
A correlation coefficient of .06 was found for
response number.

It appears that this system of equations can
produce responding that shows both within-
and between-interval dynamics similar to those
exhibited by living organisms. In this system,
within-interval variability was produced by the
combined effect of tendencies to approach and
emit food-related responses and tendencies to

engage in other behavior. The duration of the
postreinforcement pause, the rate of acceler-
ation, and the terminal response rate in each
interval were controlled by previous levels of
responding and reinforcement. Again, it must
be pointed out that the details of the proposed
model are less important than the demonstra-
tion that very variable behavior can be pro-
duced by the interaction of a small number of
relatively simple deterministic variables.
This hypothetical system of equations dem-

onstrates that chaotic performance can result
from the completely deterministic effects of a
small number of interacting independent vari-
ables. There are no unknown sources of con-
trol or external forces, yet highly variable be-
havior emerges. Chaotic behavior is not a rare
phenomenon. Chaotic motion can be produced
if (a) the system has at least three dynamical
variables and (b) the equations of motion con-
tain a nonlinear term that couples several of
the variables. Such systems are often chaotic
for some choices of constants (Baker & Gollub,
1990).

THE INDETERMINACY PROBLEM
The existence of chaotic systems governed

by deterministic equations poses another prob-
lem for behavior analysis. If the variability
commonly dismissed as noise and carefully av-
eraged out or statistically removed is the prod-
uct of a deterministic system, then the behavior
analyst must discover the determining equa-
tions. The method used to discover these in
behavior analysis has been essentially to guess
an approximate equation and estimate param-
eters from historical data. This process is well
illustrated by the example of the matching re-
lationship. This procedure can lead to prob-
lems. Specifically, the model can only be as
good as the guess.

Nonlinear dynamics implies that this pro-
cedure cannot successfully describe and predict
the behavior of systems even if the guess is a
very good one. In a linear system, small errors
in parameter estimation lead to proportionally
small errors in prediction of the final behavior.
However, in a nonlinear system, the current
behavior of the system determines its future
behavior through a feedback mechanism. A
small error in estimation of the initial param-
eters may be amplified with each feedback loop.
Small errors in estimation can become huge
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errors in prediction after a short period of time.
To predict phenomena in a nonlinear world,
one must be able to measure all variables to
infinite precision. The smallest errors in es-
timation of the initial conditions can yield wide
divergence from actual behavior, even if the
true equations are known. For example, Lo-
renz (1963) demonstrated that a system of three
simple nonlinear equations would churn out
entirely different behavior if the initial con-
ditions differed by as little as a ten thousandth
of a percent. Further, the degree and direction
of divergence could not be predicted before
each change in initial conditions. This is re-
ferred to as the indeterminacy problem,
uniqueness of trajectories, or sensitivity to ini-
tial conditions (Lorenz, 1963).

GRAPHICAL METHODS OF
SEARCHING FOR ORDER

The traditional analysis and synthesis ap-
proach requires that all independent variables
be discovered, their effects determined singly,
and the rules for their combined influence de-
scribed. Simply identifying the relevant vari-
ables has been daunting for psychology. The
nonlinear systems approach offers some hope
for gaining insight into the problem without
identifying all of the constituent components.
Nonlinear dynamics relies heavily on four
mathematical constructs: phase space, the
Poincare section, attractors, and the return map
(see Marr, 1992, for additional discussion).
The phase space of a dynamical system

shows the position of the system at any point
in time. A simple phase space can be depicted
by a graph with orthogonal coordinate direc-
tions representing each of the variables needed
to specify the instantaneous state of the system.
For example, in the hypothetical system of
equations, the response rate is specified by the
momentary probability of approaching the re-
sponse panel, and the maximal strength of re-
sponding.

Figure 2 displays the phase portrait or state
space of the hypothetical system. To display a
phase space, a graph in which the axes are the
independent variables is constructed. Each
point on the graph has coordinates X(t), Y(t),
and Z(t). By connecting the points in temporal
sequence, the trajectory of the system over time
is graphed. As can be seen in Figure 2, this is
clearly not a randomjumble of points. Instead,
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Fig. 2. Phase portrait of the hypothetical system. The
axes represent the three state variables that interact to
determine the position of the system: strength of respond-
ing, maximal response strength, and observable response
rate. The 10 orbits represent responding in each of the
first 10 intervals displayed in Figure 1. Each orbit can
provide the same type of information available in a cu-
mulative record. Within each interval, response rate is
initially close to zero, increases gradually, and finally de-
creases rapidly.

the trajectory follows an apparently quasi-pe-
riodic and bounded orbit (i.e., it is confined to
a finite region of the phase space).

In Figure 2, the axes represent the momen-
tary response rate (B), the probability of ap-
proaching the manipulandum (S7), and the
maximal strength of responding (S,,c). Ten
trajectories are displayed. These correspond to
the first 10 intervals shown in the upper panel
in Figure 1. Each trajectory traces a similar
path through phase space. Each orbit starts in
the lower left hand corner of the graph. At
this point, both response rate and response
strength are near zero. Initially, response
strength increases while response rate remains
near zero. Then response rate and response
strength increase concurrently. Finally, both
decrease to the near-zero levels. The size of
each orbit is determined by the maximal rate
of responding. Smaller orbits (such as Orbit
9) have lower values of S,,,,. Larger orbits
(such as Orbit 7) have larger values of S,,.
Examining the response rate for any one orbit
can provide the same kind of information found
in a cumulative record. Follow Orbit 7 through
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phase space. Response rate is close to zero at
the onset of the orbit. As time passes (distances
on the trajectories represent time), response
rate at first remains near zero; then it increases
until it reaches a high rate. This terminal rate
is maintained for a short duration, and then
response rate quickly decreases (following re-
inforcer delivery). This corresponds to the
postreinforcement pause, the period of re-
sponse acceleration, the terminal rate, and de-
crease following reinforcement. Orbits that
travel a shorter excursion from the origin (such
as Trajectory 9) indicate intervals that have a
lower terminal response rate. These intervals
also have fewer responses. Trajectories that
traveled far from the origin (such as Orbit 7)
contain much more responding.
The phase portrait shows the position of the

system in phase space. An attractor is the force
that determines the shape, size, and other
properties of the system (Farmer, Ott, & Yorke,
1983). The attractor is, in turn, the product
of the interacting state variables. There are
numerous types of attractors. Each has a char-
acteristic organizing effect on the behavior of
the system. These include point attractors, limit
cycles, toroidal flow, strange attractors, and
turbulence.

Point attractors draw the behavior of the
system towards one single value. In the absence
of perturbations, the system approaches a sta-
ble point. An example of a possible point at-
tractor in behavior analysis is the dynamics of
a variable-interval (VI) schedule in which re-
sponse rate approaches a specific level for each
schedule value. Regardless of the initial re-
sponse rate, the attractor will pull the behavior
to a specific stable point. Consider the example
of a VI 1-min schedule controlled by an at-
tractor that pulls response rate to a level of 50
responses per minute. If a pigeon had been
responding to a high-rate schedule and was
then exposed to the VI 1-min schedule, re-
sponding would be pulled lower to a response
rate of 50 responses per minute. If the pigeon
had been responding to a low-rate schedule
and was then switched to a VI 1 -min schedule,
responding would increase to 50 responses per
minute. In the absence of any extraneous vari-
ables, the response rate would approach the
same terminal rate regardless of the starting
point. In addition, behavior would be attracted
to the same point continuously. The response
rate would remain at approximately 50 re-

sponses per minute for each interval and each
session.

In limit cycles, the attractor is slightly more
complex. It is described as lying on a closed
curve. Trajectories may approach many points
on the curve or only a small subset of points.
In a Period 2 limit cycle, the behavior of the
system alternates between two points. This is
very similar to the description of FI dynamics
offered by Herrnstein and Morse (1958), who
suggested that the number of responses emitted
in an interval, or the duration of the postre-
inforcement pause (Shull, 1971), alternates
between a high and a low value. In a Period
3 limit cycle, the system cycles between three
points on the curve. This is similar to Dews'
(1970) description of FI dynamics. He sug-
gested that measures of responding cycle be-
tween a low, a medium, and a higher value.
In a Period 4 limit cycle, the system alternates
between four points. There can be an infinite
variety of limit cycles, but the central feature
is that they are periodic. The behavior of the
system will come back to and repeat earlier
values. As in the case with point attractors,
regardless of where the behavior of the system
starts, it will be drawn onto the curve.

Toroidal flow involves a still more complex
motion. With a point attractor, behavior was
drawn to a one-dimensional figure. With a
limit cycle, behavior was drawn to a curve, a
two-dimensional figure. With toroidal flow,
the motion is drawn to the surface of a torus,
which is essentially a three-dimensional,
doughnut-shaped figure. Behavior is drawn
around the surface of the torus with either a
periodic or a quasi-periodic orbit. An FI sched-
ule could be governed by this type of attractor.
Behavior is pulled around the torus. Some-
times it is low on the torus, such as during the
postreinforcement pause. Sometimes it is at a
moderate level on the torus, while response
rate is increasing. Sometimes it is high, such
as during terminal responding. The doughnut
is thick. On some orbits the behavior of the
system reaches the outside edge of the dough-
nut (i.e., many responses), on some orbits it
reaches only the inside ring closest to the hole
(i.e., few responses), and on many orbits it
reaches an intermediate level.

Strange attractors draw behavior into orbits
in which motion is neither periodic nor quasi-
periodic, but for which orbits are nonetheless
confined to a low-dimensional surface. Motion

346



CHAOS AND FI PERFORMANCE

on a strange attractor is often chaotic in the
sense that it is impossible to forecast the sys-
tem's long-term behavior in the presence of
even the smallest amount of observational er-
ror. In the three simpler attractors, the be-
havior of the system approaches a specific point,
a curve, or a surface. This occurs regardless
of the starting point. With a strange attractor,
the starting point is vitally important in de-
termining the future behavior of the system.
All future trajectories are determined by the
initial conditions. If two trajectories were
started at the same time, but with slightly dif-
ferent initial positions, they would quickly di-
verge. Small differences in the initial condi-
tions produce very great ones in the final
phenomenon. This is why it is difficult to pre-
dict long-term behavior: If the initial estimates
of parameters of the system are just slightly
inaccurate, the error will increase exponen-
tially, so that the state of the system is essen-
tially unknown after a very short time.

If prediction is impossible, then the chaotic
system can resemble a stochastic system (a sys-
tem subject to random external forces). How-
ever the source of the irregularity is quite dif-
ferent. With nonlinear phenomena, the
irregularity is part of the intrinsic dynamics
of the system and is not the result of unpre-
dictable outside influences. Lowe and Wear-
den (1981) proposed a stochastic mechanism
to account for the dynamics of Fl schedules.
They argued that Fl periodicities are con-
trolled by known independent variables that
are also affected by random periodic inputs. If
the phenomenon were governed by a strange
attractor, the Lowe and Wearden model could
accurately mimic the distribution of perfor-
mance across many intervals, but would not
be able to predict performance during any one
interval.
The final type of attractor produces tur-

bulence. Here the attractor is no longer low-
dimensional. Motion is highly erratic. If be-
havior in an FI schedule were turbulent, then
predicting individual responses would be im-
possible. One could say only that there is a
distribution of positions and velocities to which
the individual responses as a whole converge.
Thus, the kind of analysis offered by Lowe
and Wearden (1983) would be the most de-
tailed type of analysis possible.
The properties of the attractor are not nec-

essarily discernible from the phase portrait. To

examine complex attractors, it is often useful
to produce Poincare sections from the phase
portraits and return maps from the Poincare
sections.
A Poincare section is a means of simplifying

a complicated system. It is constructed by view-
ing the phase space diagram in such a way
that the motion is observed periodically. Imag-
ine placing a piece of paper through the phase
portrait in Figure 2. Orbits traveling through
the phase space will cross the paper at some
point x,y on the two dimensional paper sheet.
The Poincare section records these points.

Figure 3 displays the phase portrait from
the hypothetical system, the position of the
slicing plane, and the Poincare section. The
Poincare section is a two-dimensional graph.
It contains two pieces of information: (a) the
position on the x,y plane of each point of in-
tersection and (b) the order in which the points
crossed the plane. The upper panel displays a
two-dimensional projection of the same three-
dimensional phase portrait displayed in Figure
2. The lower panel displays the Poincare sec-
tion constructed by the intersection of posi-
tively directed trajectories with the plane. The
position of the plane is depicted in the upper
panel by the heavy intersecting line. The in-
tersecting plane must be positioned in phase
space so that it transects all orbits. In this
particular case, there exists an infinite number
of plane positions that can satisfy this condi-
tion. Any of these alternatives should provide
the same information. Here, the intersecting
plane was perpendicular to the x,y plane such
that y = 1.5x. (The position of the intersecting
plane was selected in this example for con-
venience.)

Follow the path of Orbit 1 in the upper
panel of Figure 3. As responding increases and
reaches its maximum rate, it will pass through
the intersection plane. The position of the in-
tersection will be recorded as dot Number 1
on the Poincar'e section. The same can be seen
for all orbits.

Figure 4 displays a return map created from
the Poincare section. The return map is con-
structed by plotting the ordinates from suc-
cessive intersecting points against each other;
that is, x(n) versus x(n + 1), where n repre-
sents the other of transection. For instance,
Point (1,2) was created by graphing the or-
dinate from Point 1 in the Poincare section
against the ordinate from Point 2 in the Poin-
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care section. The return map is important be-
cause it can display the properties of the at-
tractor. If a point attractor governs the system,
the map will display points converging to a
central position. If a limit cycle is controlling
behavior, a series of points will appear. If a

strange attractor governs the system, an odd
but describable shape will appear. If the sys-
tem is turbulent, the map will produce a mass
of seemingly random points. Figure 4 displays
a roughly circular form. Thus, the hypothet-
ical system appears to be governed by a strange
attractor.

Information about the attractor can be use-
ful for two reasons. First, it can enable pre-
diction. This is especially true with point at-
tractors and limit cycles. Further, the predictive
power is derived without identifying the un-
derlying mechanisms. Second, identifying
properties of the attractor reveals the global
organization of the system.

RECONSTRUCTING THE
ATTRACTOR IN THE ABSENCE
OF INFINITE KNOWLEDGE

To construct a true phase portrait, the po-
sition of each variable must be known in in-
finite precision through time. However, the
behavior analyst usually does not even know
all of the variables involved in a particular
setting, much less the ways in which they
change over time. Takens (1981) showed that
the properties of the attractor governing the
behavior of an n-dimensional system could be
determined if numerous measurements of the
strength of any one of the state variables x(t)
exist. In this method, an mr-dimensional phase
portrait is constructed by plotting x(t) versus
x (t + 7) versus x (t + 2 T) versus ... versus
x[t + (m - 1)T], where T is some time lag.
The phase space constructed in this manner
will be controlled by the same attractor as gov-
erns the n-dimensional phase space for almost
every variable x(t) and almost every time
lag T.
An approximation of the phase portrait con-
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0.22

0.00
0.00 022 0.44 0.66 0.88 1.10
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Fig. 4. Return map for the hypothetical system. The
map is constructed by plotting the successive ordinates of
the points of intersection from the Poincare section. Open
symbols are from points of intersection displayed in lower
panel of Figure 3, closed symbols are from the full sim-
ulation.

structed from response rates generated by the
hypothetical system is presented in Figure 5.
It is apparent that this phase portrait is vi-
sually similar to that produced by the hypo-
thetical system. Both have bounded, closed tra-
jectories. A Poincare section and return map
were constructed from the phase portrait (Fig-
ure 5). Again, the Poincare section and the
return map constructed from the approxima-
tion are very similar to those constructed from
the state variables.

RECONSTRUCTING THE
ATTRACTOR WITH

PIGEON DATA
It should be obvious that FI performance is

not governed by a point attractor. It has far
too much within- and between-interval vari-
ability. The dynamic effects are orderly enough
to force the conclusion that they must be pro-
duced by the system and not by random ex-
traneous events. The best candidates are the
multidimensional attractors, toroidal flow,
strange attractors, and turbulence. Techniques
outlined above for examining the properties of

Fig. 3. Phase portrait and Poincare section of the hypothetical system. A Poincare section can be used to simplify
phase portraits. The phase portrait is transected by a slicing plane. Orbits traveling through phase space cross the
slicing plane. The Poincare section records the location and order of transection. The upper panel displays a two-
dimensional projection of the three-dimensional phase portrait in Figure 2. The heavy diagonal line shows the
approximate location of the slicing plane. The lower panel displays the Poincare section.
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the attractor were employed to determine
whether the behavior of a pigeon responding
to an Fl schedule of reinforcement could be
described by a low-dimensional attractor.

U)

+ 2 1 METHOD

- ~~~~Subjects
Four White Carneau pigeons were main-

j r,i,y><^ 2/J tained at 80% of their free-feeding weights. All
D-' / S ) subjects were experimentally naive.

Apparatus
The experimental chamber was 36 cm long,

32 cm wide, and 35 cm high. The walls and
floor were lined with unpainted aluminum.
Two 1-W white lights, each located in an up-

IEx ep e a tper corner of the response panel, provided gen-
eral illumination. The panel also contained

1.0 three 1.9-cm-diameter response keys (Ger-
brands), each 21 cm above the floor and 8 cm
apart. The center key could be transillumi-

., o o' nated by two 1-W red lights. The keys were
x . activated by a force of at least 0.18 N. An

06
.- aperture (5 cm square) beneath the center key>0.6 .and 9 cm from the floor allowed occasional

0 access to Purina® Pigeon Checkers, the birds'

04 .- standard diet. During the 4-s feeder cycles, the
0 0.4 aperture was illuminated by a 1-W white light,

-' .and the key and houselights were turned off.
e . Continuous white noise helped mask extra-
0 02

neous sounds. Experimental events were pro-
grammed and recorded by an experimental

o0 , , controller (Walters & Palya, 1984).
0.0 02 0.4 0.6 08 1.0 Procedure

Position on x axis Sessions were conducted 6 days per week.
1.0 Each session ended after 50 food deliveries.

After key pecking had been established via
.-8.lo .

00
autoshaping, subjects were exposed to an FI

0.8 .. - *20-s schedule. The experimental condition
lasted 20 sessions. The number of responses

0.6 - emitted during 1-s bins was recorded.0-4

0.4 *4

Fig. 5. The reconstructed phase portrait, a Poincare
02 . section, and return map for the hypothetical system. The

upper panel displays response rates measured at three
different time lags (lag = 3 s). The center panel displays
a Poincare section created from the phase portrait. The

00 lower panel shows the return map constructed from the
00 02 04 0.6 08 1.0 Poincare section. The return map is similar to the map

X displayed in Figure 4 and suggests that responding is
controlled by a strange attractor.
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Table 1

Index of curvature, runs tests, and autocorrelations.

Runs test Correlation
(Z score) coefficient

Index Re- Re-
Sub- Ses- of cur- sponse sponse
ject sion vature number PRP number PRP

26 16 0.541 4.6 3.2 .17 .11
17 0.514 3.9 4.6 .19 .05
18 0.588 4.0 3.7 .07 .22
19 0.524 5.0 4.2 .02 -.01
20 0.494 3.2 2.9 .39 .22

27 16 0.291 5.2 3.7 -.05 -.01
17 0.351 2.3 3.2 .20 .09
18 0.355 3.2 3.3 -.01 .04
19 0.394 2.4 2.6 .03 -.02
20 0.401 2.7 2.8 .25 .12

32 16 0.138 2.8 2.8 -.09 .24
17 0.118 5.7 4.1 .17 .05
18 0.149 4.9 3.3 -.02 .04
19 0.126 5.1 5.5 -.06 -.06
20 0.232 2.1 3.0 .22 -.03

33 16 0.178 4.9 5.7 -.15 .14
17 0.242 2.9 3.2 .07 -.03
18 0.166 3.2 2.7 .17 .02
19 0.207 3.0 3.0 -.09 .04
20 0.232 4.5 5.3 .31 -.11

RESULTS AND DISCUSSION
The credibility of the chaos analysis depends

upon the similarity of the obtained Fl perfor-
mance and that of typical FI performance. All
data analyses examined performance during
the last five sessions of the condition. Figure
6 displays representative segments of the cu-
mulative record from each subject. The pattern
can be described as a pause followed by a grad-
ually increasing response rate that reaches a

maximal value near the end of the interval.
The records display several other features that
are typical of Fl responding (Ferster & Skin-
ner, 1957). For example, there is occasional
rough grain, obvious renewed pausing after
responding had begun. Degenerate intervals
appeared; responding decelerated late in the
interval. Knees were seen, characterized by
decelerating response rates early in the interval
followed by renewed rapid responding. Noth-
ing in these cumulative records seems to in-
dicate atypical FI performance.

Quantitative measures of variability also in-
dicate that the current experiment produced
typical dynamic effects. An index of curvature

was computed for each subject for each of the
last five sessions. Complete results are dis-
played in Table 1. Values ranged from 0.118
to 0.588, with a median value of 0.267. Runs
tests and Lag 1 autocorrelations were con-
ducted for both postreinforcement pause and
response number. These results are also dis-
played in Table 1. All runs tests were signif-
icant (Z = 2.1-5.7, p < .05). The correlation
coefficients ranged from +.39 to -.11. Twenty-
five of the 40 coefficients were positive; how-
ever, none of the coefficients were large (me-
dian coefficient = .04). All values were similar
to those found in previous reports (Dews, 1970;
Gentry & Marr, 1982; Gentry et al., 1983;
Palya & Bevins, 1990; Shull, 1971; Wearden,
1979; Wearden & Lowe, 1983). It appears
that these data are representative of Fl per-
formance and show the characteristic dynamic
effects.
To proceed with the analysis, it is necessary

to convert the data from response counts in
each second to response rates. The approxi-
mation of the phase portrait requires multiple
determinations of a single continuous variable.
Unfortunately, the traditional conditioning
procedures do not provide this kind of mea-
surement. The number of responses per bin is
not a continuous variable. Interresponse time
is a continuous variable, but it cannot be mea-
sured at regular intervals. Both the number
of responses per bin and interresponse times
can be converted into momentary response
rates. The response rate during any second t
was computed as the average of the response
rates during seconds t, t - 1, and t + 1. This
smoothing routine was conducted twice.
The smoothing routine preserves the global

characteristics of responding, but it does alter
the data somewhat. The procedure yields a
continuously changing response rate that be-
gins near zero and increases and decreases
smoothly to the peak response rate, rather than
increasing and decreasing irregularly over the
course of the interval. Knees and degenerate
intervals are preserved, but graininess is re-
moved. The peak response rate is decreased in
some intervals because the zero response rate
from the hopper cycle is averaged into the peak
rates. The period of not responding is also
shortened because bins with small response
rates are averaged into the zero rate intervals
close to the end of the postreinforcement pause.
The smoothing procedure was conducted for
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Bird 26 Bird 27 Bird 32 Bird 33

Fig. 7. Reconstructed phase portraits. Phase portraits were constructed using response rates for each second. Only
the behavior from Intervals 15 to 39 are displayed. The axes represent response rate at time t, response rate at time
t + 3 s, and response rate at time t + 6 s.

each of the last five sessions for each subject.
This produced 20 lists of about 1,200 deter-
minations of the response rate. All further
analyses were conducted with these data. Tak-

ens' (1981) method was used to reconstruct the
phase space and examine properties of the at-
tractor. Because Takens' method involves plot-
ting x(t) versus x(t + T) versus x(t + 2T)
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Fig. 8. Poincare sections. All Poincare sections were created by passing a plane through the center of the orbits
displayed in Figure 7 and recording the position of points of intersection.

(where T is some time lag), the first practical
problem involved selecting an appropriate time
lag. Takens suggested that, in principle, any
lag should suffice. A lag of 3 s was selected
through trial and error. The lag was increased
until the figure produced an organization that
could be detected visually.

Figure 7 displays phase portraits for each
subject. Behavior in phase space is organized.
In general, response rate begins at a near-zero
level, increases to a maximum rate, and then
decreases. Very small orbits represent knees
or intervals in which little responding oc-
curred. Between-interval variability can also
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Bird 26 Bird 27 Bird 32 Bird 33
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Fig. 9. Retum maps. All return maps were constructed from the Poincare sections shown in Figure 8.

be observed. Responding of Birds 27 and 32
showed much less variability. This can be de-
tected by noting that all orbits follow a very
similar path. This can be seen clearest for Bird
32, Session 16. Birds 26 and 33 had more
intrasession variability. Orbits reached many
different maximum response rates before de-
creasing. As a result, trajectories occupy many
positions within the bounded shape. Behavior
within each interval might be described by
phase portraits, but the maximum value of
responding in the next interval cannot be ob-
tained from these figures. Properties of the

attractor assumed to govern the organization
were examined by constructing Poincare sec-
tions and return maps.

Poincare sections were created by passing a
plane through Figure 7 as described above.
Figure 8 displays Poincare sections for all sub-
jects. The Poincare sections show a series of
points falling along the diagonal. The diagram
simply displays the points of intersection. The
Poincare section becomes more interesting
when a return map is constructed by plotting
the ordinates from successive intersecting points
against each other (Figure 9). If the system is
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controlled by a low-dimensional attractor, the
return map will display some structure or or-
ganization. If no organization is captured or
if behavior is controlled by random inputs,
then the return map should produce a mass of
dots occupying all possible spaces on the return
map. Figure 10 displays a return map con-
structed from random behavior.
The return maps are not as orderly as could

be hoped. However, they show more organi-
zation than would be expected to occur from
random processes. The maps, in general, share
two features: (a) Points tend to cluster along
the diagonal, and (b) there tends to be an ab-
sence or a lower concentration of points in the
center of the figure. Both of these traits are
well illustrated in the return map constructed
for Bird 32, Session 19.

THE RETURN MAP AS A
PREDICTIVE SCHEME

The appearance of order in the map affords
the opportunity to use the map as a predictive
scheme to forecast future behavior. Thus, the
Poincare section and map can serve two func-
tions: (a) The map gives information about the
underlying system, and (b) it can provide an
empirical prediction scheme even in the ab-
sence of knowledge of the governing equations.
The utility of these maps for predicting re-
sponse rates in FI schedules was evaluated.

Prediction was based on the assumption that
the return maps captured the motion of the
response rate as it travels through phase space.
Although the maps did not show a clear pat-
tern, they do show an approximately linear
relationship with an open center. This is sim-
ilar to an ellipse. Therefore, it will be assumed
that the motion of response rates is approxi-
mately elliptical. Thus, response rate should
increase within each interval according to an
ellipse. Likewise, between-interval variability
should be described by an ellipse.

If the shape of the attractor has been de-
scribed and the present behavior is known,
then future behavior can be predicted. Four
different types of predictions were made from
the return maps. If the response rate in any
given second were specified, then (a) a priori
and (b) a posteriori predictions of response rate
in the next second were generated. These mod-
els predict response rate in the next second as

a function of performance in the current sec-
ond. If the behavior over an entire interval was
provided, then (c) a priori and (d) a posteriori
predictions of response rate in each second of
the next interval were produced. These models
predict response rates over the entire interval
as a joint function of the passage of time in
the current interval and of the strength of re-
sponding in the previous interval. In the a
posteriori models, constants for the ellipse were
estimated from the same session. In the a priori
models, constants for the ellipse were estimated
from the immediately preceding session. The
values of all constants are included in Appen-
dix 2.

Table 2 displays the percentage of variance
accounted for (VAC) by these analyses. As can
be seen, the predictions provided a close quan-
titative fit for both a priori and a posteriori
analyses when predicting response rates dur-
ing the next second. The technique was con-
siderably less successful when predictions were
made for responding across the entire next
interval. This is characteristic of strange at-
tractors (Abraham & Shaw, 1983; Rossler,
1976; Shaw, 1981). Prediction is more suc-
cessful over short time frames because of the
indeterminacy problem; small errors in esti-
mation become amplified over time. A posteri-
ori predictions for the next second ranged from
89% to 98% VAC. The a priori account pre-
dicted between 83% and 98% of the variance.
When predictions were made for the entire
next interfood interval, the a posteriori model
accounted for between 50% and 76% of the
data variance. The a priori account predicted
between 41% and 72% VAC.

Although it is true that the nonlinear dy-
namical analysis was able to account for a large
percentage of the variance, it is not clear that
the procedure is more successful than typical
accounts. The largest source of variance came
from within-interval dynamics. The smooth-
ing procedure resulted in response rates that
continuously increased and decreased and in-
troduced a weak second-to-second sequential
dependency. It is possible that any continuous
function might provide a good quantitative fit.
The ellipse contained two fitting parameters
whose values were estimated from the return
maps. It seems reasonable to compare the re-
sults obtained by the nonlinear dynamic anal-
ysis to traditional models that contain at least
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two free parameters. The values of the free
parameters were estimated from session data
and not from the return maps. Five commonly
used functions served as control models:

a linear function

Rn+ -= aRn + b,

an exponential function

Rn+1 = aRnb,

a sine function

Rn+1 = a sin(bRn),

(8)

(9)

(10)

and the quadratic functions

Rn+, aRn2 + bRn, (11)

and

Rn+1= aRn2 + bRn + c (12)

where a, b, and c are constants.
Four versions of each model were employed:

a priori and a posteriori models that predicted
response rate in the next second as a function
of response rate in the present second and a

priori and a posteriori models that predicted
response rate during each second over the en-

tire next interval as a function of the passage
of time during the interval. Constants for the
a priori model for each of the models were

estimated from the average performance from
the previous session. Constants for the a pos-
teriori models were estimated using the aver-

age performance from the same session. The
values of all constants are included in Appen-
dix 2.

Table 2 displays the VAC by the control
models. All models provide a reasonably close
quantitative fit when predicting response rates
in the next second. Predictions accounted for
between 55.8% and 94.6% of the data variance.
These values are comparable to those produced
by the nonlinear dynamics analysis. These re-

sults suggest that response rates exhibited a

robust second-to-second dependency that any
increasing function could capture. The control
models were less successful when predicting
response rates across the entire next interval.
The VAC ranged from 19.7% to 64.6%. The
control accounts were more successful for Birds
27 and 32 because these subjects exhibited
much less interval-to-interval variability.
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Fig. 10. Return map of random behavior. This figure
could be produced by a stochastic system or by randomly
ordering the behavioral output from a large sequence of
Fl intervals generated by a deterministic system. Under
these conditions, an approximation of the phase portrait,
a Poincare section, and this return map could be con-

structed. No order can be detected. Points appear in equal
densities across the entire graph.

All control models were able to account for
within-interval variability, but none could de-
scribe between-interval dynamics as effectively
as the nonlinear dynamical model. The control
models were more successful when less be-
tween-interval variability was exhibited. In
contrast, the nonlinear dynamical systems
analysis could predict performance with equal
success regardless of the amount of between-
interval variability. This suggests that the ac-

count may have captured some of the interval-
to-interval dynamics.

GENERAL DISCUSSION
The dynamical phenomena discussed

above-toroidal flow, strange attractors, tur-
bulence, chaotic motion, indeterminacy, and
diverging trajectories-are different from the
concepts familiar to behavior analysts. This
paper hopes to (a) introduce techniques that
might prove useful in identifying attractors,
(b) suggest the possibility that strange attrac-
tors might underlie behavioral systems, and
(c) suggest a utility in examining them. Al-
though more evidence is needed to conclude
that strange attractors govern behavioral sys-
tems, finding evidence for strange attractors
could force a reevaluation of some of the basic
concepts in behavior analysis.

I.
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Table 2
Percentage of variance accounted for by models.

Chaos analysis Linear Exponential

Next Next Next Next Next Next
Subject Session second interval second interval second interval

26 16 93.4 (91.4) 66.8 (65.6) 91.9 (86.9) 42.7 (42.5) 92.2 (86.8) 26.9 (25.8)
17 94.3 (90.6) 71.8 (72.2) 92.2 (87.8) 46.9 (46.9) 92.9 (87.6) 26.4 (24.7)
18 92.1 (90.4) 64.8 (68.2) 91.9 (86.9) 26.8 (26.4) 92.5 (87.6) 20.3 (20.2)
19 92.3 (90.6) 67.9 (62.1) 90.7 (85.7) 33.7 (32.3) 90.8 (86.5) 17.8 (15.9)
20 94.0 (82.8) 69.9 (71.1) 92.5 (87.5) 24.9 (24.6) 93.1 (87.0) 20.9 (20.4)

Grouped 92.0 (90.1) 70.8 (67.9) 92.9 (87.9) 23.2 (22.8) 93.1 (88.0) 16.6 (16.1)
27 16 97.8 (95.5) 55.5 (62.2) 94.0 (87.0) 54.0 (57.1) 93.0 (88.5) 58.1 (57.7)

17 97.8 (97.0) 50.4 (41.8) 89.8 (84.8) 55.9 (52.9) 92.6 (85.6) 58.0 (57.0)
18 93.6 (96.3) 76.0 (45.3) 93.0 (88.0) 19.5 (19.4) 94.6 (89.5) 13.9 (12.9)
19 97.5 (97.7) 60.0 (52.3) 92.4 (88.6) 56.6 (55.2) 93.2 (88.5) 55.9 (54.1)
20 95.9 (96.0) 70.1 (59.9) 92.2 (87.5) 64.7 (64.6) 91.4 (86.5) 57.1 (56.6)

Grouped 97.2 (96.5) 65.5 (50.6) 93.1 (87.9) 47.2 (47.9) 93.0 (87.0) 42.7 (42.7)
32 16 95.0 (95.1) 66.3 (51.2) 68.2 (68.9) 41.6 (40.5) 74.0 (59.1) 59.6 (59.1)

17 95.9 (95.9) 72.4 (64.1) 72.1 (58.7) 46.6 (43.2) 75.7 (65.6) 50.4 (50.0)
18 93.9 (89.5) 68.2 (72.2) 78.1 (66.7) 30.5 (28.7) 77.9 (66.2) 24.2 (23.8)
19 96.2 (95.5) 67.7 (68.1) 75.7 (72.1) 42.3 (41.2) 88.6 (73.1) 58.7 (52.2)
20 97.8 (97.2) 65.2 (71.8) 76.5 (69.1) 45.9 (44.6) 89.5 (76.6) 59.1 (57.6)

Grouped 96.4 (96.0) 72.7 (70.3) 77.0 (63.5) 43.2 (43.1) 88.0 (71.2) 53.6 (53.6)
33 16 89.1 (85.9) 63.1 (70.5) 83.4 (75.6) 22.5 (24.6) 80.7 (75.1) 22.0 (21.9)

17 90.0 (87.0) 64.1 (67.2) 85.1 (79.8) 24.6 (20.5) 78.5 (76.7) 22.5 (21.1)
18 91.8 (89.0) 57.8 (64.9) 80.8 (79.5) 23.4 (22.4) 76.6 (60.4) 25.3 (25.2)
19 88.2 (89.0) 64.8 (62.8) 84.5 (75.5) 29.0 (21.8) 78.4 (73.1) 27.3 (26.7)
20 90.2 (89.1) 64.7 (61.9) 82.2 (77.9) 22.2 (20.1) 81.1 (75.4) 22.1 (21.3)

Grouped 89.9 (88.4) 63.5 (67.2) 83.3 (78.9) 24.9 (23.1) 82.9 (76.1) 23.6 (22.8)

Note. Values are for a posteriori predictions; a priori predictions are in parentheses.

Behavior analysis assumes that phenomena
change linearly and reach equilibrium. In a
nonlinear world, equilibrium and stable per-
formance are rare and/or ephemeral events.
If behavior is a nonlinear phenomenon, it
would imply that the effects that are currently
identified as stable are illusory. The stable be-
havior typically observed is obtained by av-
eraging out the dynamic effects. Currently,
conditions are conducted until steady-state be-
havior is obtained. Yet, even in what is now
labeled steady-state behavior, performance
fluctuates. Experiments that conduct condi-
tions for hundreds of sessions continue to show
large irregular intersession modulations in
performance (Cumming & Schoenfeld, 1958;
Palya, 1992).
A second assumption made by behavior an-

alysts involves the research approach. The tra-
ditional approach has been an essentially in-
ductive process. The theorist independently
examines a set of independent variables (e.g.,
reinforcer frequency, reinforcer magnitude,

reinforcer delay, or reinforcer deprivation).
After the effects of these variables have been
identified, it is hoped that unifying principles
can be found to account for a large number of
the effects. Although this approach has pro-
duced notable success for some goals and some
types of behavior, it has not led to a unified
theory of behavior.

If behavior is a nonlinear phenomenon, then
the traditional approach cannot succeed. If be-
havior is controlled by interacting variables,
the fact that they simultaneously undergo sus-
tained motion on a complex orbit through phase
space means that the signs and magnitudes of
interaction change continuously throughout the
orbit. That is, the effect of any one variable
will depend on the simultaneous influence of
several interacting variables. If one variable is
repeatedly changed in a systematic fashion, the
same behavioral output could occur, in each
replication, only if all other variables contin-
ued to remain at the same values (with infinite
precision), or changed at the same rate in each
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Table 2 (Continued)

Sine Quadratic (c = 0) Quadratic

Next Next Next Next Next Next
second interval second interval second interval

89.9 (86.8) 26.9 (25.8) 91.1 (84.2) 42.6 (41.1) 91.3 (86.2) 43.7 (43.1)
90.9 (87.6) 26.4 (24.7) 91.0 (85.9) 46.1 (45.3) 91.6 (86.1) 47.7 (47.1)
90.5 (87.6) 20.3 (20.2) 91.8 (86.2) 29.6 (27.3) 91.8 (86.2) 29.8 (27.7)
89.4 (86.5) 17.8 (15.9) 89.9 (74.1) 33.7 (30.1) 90.3 (85.2) 34.1 (33.3)
92.3 (87.0) 20.9 (20.4) 91.6 (82.6) 26.6 (25.1) 92.7 (85.3) 27.6 (25.6)
89.9 (88.0) 16.6 (16.1) 90.5 (85.8) 24.4 (23.6) 92.0 (88.3) 25.5 (24.3)
93.8 (88.5) 58.1 (57.7) 93.3 (88.2) 58.1 (56.7) 93.9 (88.4) 59.3 (57.1)
92.4 (85.6) 58.0 (57.0) 92.7 (86.8) 54.4 (53.6) 93.3 (86.4) 55.6 (54.3)
93.5 (89.5) 13.9 (12.9) 93.6 (85.3) 21.1 (20.3) 94.1 (89.3) 21.5 (20.7)
91.9 (88.5) 55.9 (54.1) 91.0 (86.0) 55.0 (54.1) 92.8 (88.4) 56.3 (55.5)
91.4 (86.5) 57.1 (56.6) 91.2 (83.8) 60.1 (59.7) 91.7 (86.6) 62.1 (60.9)
93.0 (87.0) 42.7 (42.7) 92.6 (85.2) 51.3 (50.1) 92.8 (85.8) 52.3 (51.1)
77.3 (59.1) 59.6 (59.1) 70.3 (60.2) 41.9 (41.1) 80.8 (73.3) 42.4 (41.6)
82.1 (65.6) 50.4 (50.0) 75.2 (66.3) 43.3 (42.3) 85.0 (75.9) 44.9 (43.3)
85.1 (66.2) 24.2 (23.8) 84.1 (50.8) 29.0 (27.1) 85.1 (58.7) 29.3 (28.3)
86.1 (73.1) 58.7 (52.2) 84.9 (70.1) 47.1 (46.7) 89.3 (70.0) 47.9 (47.3)
81.0 (76.6) 59.1 (57.6) 77.0 (70.8) 45.9 (45.1) 88.3 (81.0) 47.1 (45.9)
77.1 (71.2) 53.6 (53.6) 74.3 (64.1) 46.3 (45.1) 87.3 (79.6) 46.7 (46.2)
80.4 (75.1) 22.0 (21.9) 74.5 (68.5) 26.6 (25.1) 88.1 (81.1) 26.9 (26.1)
76.4 (76.7) 22.5 (21.1) 75.3 (64.3) 23.3 (21.5) 89.8 (84.8) 23.9 (22.1)
70.8 (60.4) 25.3 (25.2) 71.5 (53.5) 20.7 (19.4) 87.6 (54.5) 21.1 (19.9)
75.5 (73.1) 27.3 (26.7) 67.2 (60.3) 26.3 (25.4) 82.9 (72.5) 26.9 (25.5)
76.1 (75.4) 22.1 (21.3) 75.1 (70.5) 19.9 (19.7) 84.1 (76.5) 21.6 (20.7)
83.5 (76.1) 23.6 (22.8) 80.5 (73.5) 26.0 (25.1) 86.4 (82.1) 26.8 (25.5)

repetition. This type of precision is logically
impossible in behavioral systems. Consider the
level of food deprivation as an example. For
behavioral output to remain constant, expe-
rienced food deprivation must start at the same
level (to infinite precision) every session, and
must either remain at that level or change at
the same rate within each session. Eating a
half gram less or one second later during one
feeder cycle could alter the system. Thus, the
same behavioral output could never appear in
any replication. This may explain why con-
tradictory results are sometimes found in ap-
parently straightforward replications (e.g.,
Hayes & Hayes, 1990). Subtle changes in state
variables (that were not being studied and that
had been experimentally controlled) may have
occurred during the replication. This would
alter the interaction of all other variables, which
could in turn alter observed behavior.
The most disturbing implication of chaos

theory is its effects on prediction and control.
As previously described, exact prediction can

occur, in a nonlinear system, only if the start-
ing conditions are known perfectly. In behav-
ioral systems, this kind of precision is impos-
sible. The same limitations that impair
prediction also impair control. Control is pro-
duced by altering starting conditions or by al-
tering conditions in an existing system. Non-
linear dynamics implies that small changes to
certain state variables can alter the behavior
of the system. However, it would be impossible
to predict what the effect might be. This be-
comes apparent when you consider that it is
impossible to predict, in detail, what the system
might do in the absence of intervention. It is
impossible to specify how the system might
change, because it was impossible to specify
what it would have done before the interven-
tion. One can only be sure that the behavior
of the system must be different. The best that
could be hoped for is a statistical description
of likely states.

Short-term control and prediction may still
be possible. Some complex multifactor systems
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can be describable with one-dimensional maps
(Lorenz, 1963; Shaw, 1981). In these cases,
the parameters associated with the map are
attributes of the whole system. The parameters
will not be exact measures. If they are good
estimates, short-term predictions will generate
small amounts of error. The estimates can then
be corrected for future predictions. The dy-
namic analyses employed in the present paper
demonstrate the advantages that this type of
short-term prediction provides.
The final concern raised by nonlinear dy-

namical systems theory revolves around the
relationship between it and current behavior-
analytic practices. Embracing the methods de-
scribed in the present paper does not neces-
sarily require supplanting the more traditional
approach of attempting to relate changes in
rates of behavior to changes in environmental
conditions. Nonlinear dynamics can more
properly be viewed as a framework for un-
derstanding when the various environmental
effects may exert their various effects. Nonlin-
ear dynamics might be used to describe how
the system as a whole functions and how vari-
ables interact. The traditional approach can
be used to identify what the variables are, and
how they can be altered. The two approaches
can be complementary.

Nonlinear dynamics can also be used to sug-
gest new avenues for traditional research. For
instance, reconstructed phase portraits, and the
maps obtained from them, do not reveal the
underlying psychological mechanisms. On the
other hand, such reconstructions may provide
a criterion that could be used to guide the
development and assess the validity of mech-
anistic models. For instance, the present anal-
ysis does not reveal a mechanism that might
be responsible for the sequential dependencies.
However, it might provide a description of the
organization of such a system that can be used
to guide the search for models or to assess
mechanisms.
The present paper demonstrates how non-

linear dynamics can be used to describe at-
tractors and predict behavior, and also suggests
how it can be used to search for the psycho-
logical mechanisms that produce the behavior.
If nonlinear dynamics is to prove useful in
behavior analysis over a wide range of prob-
lems, a fundamental question concerning the
dimension of the attractors that govern behav-

ioral systems must be answered. Should low-
dimensional motion prove to be ubiquitous,
there is cause for optimism. This suggests that
even the most complex behavior might stem
from very simple deterministic systems. This
is a much more hopeful alternative than the
idea that unpredictable, variable behavior is
the product of a very large number of com-
plexly interacting variables whose effects must
be understood independently and in combi-
nation. Conversely, if the dimensionality of
behavioral systems is generally high, behavior
analysts may have to content themselves with
statistical statements about distributions of re-
sponse states.

REFERENCES
Abraham, R. H., & Shaw, C. D. (1983). Dynamics-

The geometry of behavior. Part 2. Chaotic behavior. Santa
Cruz, CA: Aerial Press.

Baker, G. L., & Gollub, J. P. (1990). Chaotic dynamics.
Cambridge, MA: Cambridge University Press.

Cumming, W. W., & Schoenfeld, W. N. (1958). Be-
havior under extended exposure to a high-value fixed
interval reinforcement schedule. Journal of the Exper-
imental Analysis of Behavior, 1, 245-263.

Dews, P. B. (1966). The effect of multiple SA periods
on responding on a fixed-interval schedule: V. Effects
of periods of complete darkness and of occasional omis-
sion of food presentations. Journal ofExperimental Anal-
ysis of Behavior, 9, 573-578.

Dews, P. B. (1970). The theory of fixed-interval re-
sponding. In W. N. Schoenfeld (Ed.), The theory of
reinforcement schedules (pp. 43-61). New York: Ap-
pleton-Century-Crofts.

Dews, P. B. (1978). Studies on responding under fixed-
interval schedules of reinforcement: II. The scalloped
pattern of the cumulative record. Journal of the Exper-
imental Analysis of Behavior, 29, 67-75.

Farmer, J. D., Ott, E., & Yorke, J. A. (1983). The
dimension of chaotic attractors. Physica, 7D, 153-180.

Ferster, C. B., & Skinner, B. F. (1957). Schedules of
reinforcement. New York: Appleton-Century-Crofts.

Fry, W., Kelleher, R. T., & Cook, L. (1960). A math-
ematical index of performance on fixed-interval sched-
ules of reinforcement. Journal ofthe Experimental Anal-
ysis of Behavior, 3, 193-199.

Gentry, G. D., & Marr, M. J. (1982). Intractable prop-
erties of responding under a fixed-interval schedule.
Journal of the Experimental Analysis of Behavior, 37,
233-241.

Gentry, G. D., Weiss, B., & Laties, V. G. (1983). The
microanalysis of fixed-interval responding. Journal of
the Experimental Analysis of Behavior, 39, 327-343.

Gleick, J. (1987). Chaos: Making a new science. New
York: Viking.

Hayes, S. C., & Hayes, L. J. (1990). The "It" that is
steady in steady states. The Behavior Analyst, 13, 177-
178.

Herrnstein, R. J., & Morse, W. H. (1958). A conjunc-



CHAOS AND FI PERFORMANCE 361

tive schedule of reinforcement. Journal of the Experi-
mental Analysis of Behavior, 1, 15-24.

Killeen, P. (1975). On the temporal control of behavior.
Psychological Review, 82, 89-115.

Lorenz, E. N. (1963). Deterministic nonperiodic flow.
Journal of Atmospheric Science, 357, 282-291.

Lowe, C. F., & Wearden, J. H. (1981). A quantitative
model of temporal control on fixed-interval schedules:
Dynamic properties of behavior. In C. M. Bradshaw,
E. Szabadi, & C. F. Lowe (Eds.), Quantification of
steady-state behavior (pp. 177-188). Amsterdam: El-
sevier/North Holland.

Marr, M. J. (1992). Behavior dynamics: One perspec-
tive. Journal of the Experimental Analysis of Behavior,
57, 249-266.

Neuringer, A. J., & Schneider, B. A. (1968). Separating
the effects of interreinforcement time and number of
interreinforcement responses. Journal of the Experi-
mental Analysis of Behavior, 11, 661-668.

Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw,
R. S. (1980). Geometry from a time series. Physical
Review Letters, 45, 712-716.

Palya, W. L. (1992). Dynamics in the fine structure of
schedule-controlled behavior. Journal ofthe Experimen-
tal Analysis of Behavior, 57, 267-287.

Palya, W. L., & Bevins, R. A. (1990). Serial condition-
ing as a function of stimulus, response, and temporal
dependencies. Journal of the Experimental Analysis of
Behavior, 53, 65-85.

Randolph, J. J., & Sewell, W. R. (1968). A chained-
adjusting ratio schedule. Psychological Reports, 22,989-
995.

Rosenberg, J. (1986). Reinforcement probability and
ordinal position of response in fixed-interval schedules.
Journal of the Experimental Analysis of Behavior, 45,
103-106.

Rossler, 0. E. (1976). Chaotic behavior in simple re-
action systems. Zeitschrift fur Naturforschung, 31a, 259-
264.

Shaw, R. (1981). Strange attractors, chaotic behavior,
and information flow. Zeitschrift fur Naturforschung, 36a,
80-112.

Shull, R. L. (1971). Sequential patterns in postrein-
forcement pauses on fixed-interval schedules of food.
Journal of the Experimental Analysis of Behavior, 15,
221-231.

Shull, R. L., & Brownstein, A. J. (1970). Interresponse
time duration in fixed-interval schedules of reinforce-
ment: Control by ordinal position and time since re-
inforcement. Journal of the Experimental Analysis of Be-
havior, 14, 49-53.

Sidman, M. (1960). Tactics of scientific research: Evalu-
ating experimental data in psychology. New York: Basic
Books.

Siegel, S. (1956). Nonparametric statistics. New York:
McGraw-Hill.

Skinner, B. F. (1938). The behavior of organisms: An
experimental analysis. New York: Appleton-Century.

Staddon, J. E. R. (1977). Schedule-induced behavior.
In W. K. Honig & J. E. R. Staddon (Eds.), Handbook
of operant behavior (pp. 125-152). Englewood Cliffs,
NJ: Prentice-Hall.

Takens, F. (1981). Detecting strange attractors in tur-
bulence. In D. A. Rand & L. S. Young (Eds.), Lecture
notes in mathematics (pp. 366-381). New York:
Springer-Verlag.

Walters, D. E., & Palya, W. L. (1984). An inexpensive
experiment controller for stand-alone applications or
distributed processing networks. Behavior Research
Methods, Instruments, 6r Computers, 16, 125-134.

Wearden, J. H. (1979). Periodicities within a fixed-
interval session. Journal of the Experimental Analysis of
Behavior, 31, 345-350.

Wearden, J. H., & Lowe, C. F. (1983). Fixed-interval
performance: The dynamics of behavior and the in-
terval length. Journal of the Experimental Analysis of
Behavior, 39, 323-326.

Weiss, B., Laties, V. G., Siegel, L., & Goldstein, D. (1966).
A computer analysis of serial interactions in spaced
responding. Journal of the Experimental Analysis of Be-
havior, 9, 619-626.

Zeiler, M. D. (1977). Schedules of reinforcement: The
controlling variables. In W. K. Honig & J. E. R.
Staddon (Eds.), Handbook ofoperant behavior (pp. 201-
232). Englewood Cliffs, NJ: Prentice-Hall.

Zeiler, M. D. (1979). Output dynamics. In M. D. Zeiler
& P. Harzem (Eds.), Advances in analysis of behaviour:
Vol. 1. Reinforcement and the organization of behavior
(pp. 79-115). New York: Wiley.

Received August 6, 1991
Final acceptance December 14, 1991



362 MARK S. HOYERT

APPENDIX 1
Constants used in the hypothetical model.

S- Sr.ax

b=.99 c= 1.00

Sa- S..
1 -fe(gs")'

f=.01 g= 1.00

S, = 1 - S. = j{sin[kw(MI + SI + T(R)]} + I

j=.35 k= 1.0 1=.5

T(R) 1 0 + o(m + n) < R < m + o(m + n), o = 0, 1, 2, ...

Om + o(m + n) < R < (o + 1) (m + n),o =0, 1,2,...
m = 1.0 n = 3.0

B = (S - Sa)p

p = 2.5

(Equation 2)

(Equation 4)

(Equation 5)

(Equation 6)

(Equation 7)

APPENDIX 2
Constants used to predict data.

Ellipse Linear Linear Exponential Exponential Sine
next interval next second next interval next second next interval next secondSub-

ject Session a b a b a b a b a b a b

26 15 -0.067 0.601 1.055 0.049 0.085 -0.351 1.125 0.849 0.003 2.231 1.662 0.765
16 -0.025 0.616 1.076 0.049 0.099 -0.432 1.158 0.858 0.002 2.358 1.886 0.693
17 -0.126 0.659 1.048 0.054 0.092 -0.370 1.127 0.840 0.003 2.137 1.648 0.800
18 -0.091 0.539 1.129 0.028 0.072 -0.347 1.153 0.879 0.001 3.072 1.580 0.843
19 -0.073 0.678 1.024 0.049 0.075 -0.312 1.063 0.776 0.004 1.932 1.184 1.148
20 -0.189 0.432 1.052 0.040 0.069 -0.260 1.073 0.852 0.005 1.841 1.462 0.831

Grouped -0.064 0.596 1.066 0.044 0.081 -0.344 1.115 0.841 0.003 2.268 1.552 0.863
27 15 -0.041 0.351 0.951 0.145 0.105 -0.112 1.170 0.738 0.099 1.041 1.903 0.687

16 -0.142 0.200 0.933 0.172 0.100 -0.092 1.171 0.728 0.183 0.799 1.858 0.688
17 -0.174 0.213 0.957 0.114 0.094 -0.096 1.110 0.773 0.081 1.026 1.623 0.785
18 -0.115 0.541 0.956 0.144 0.119 -0.133 1.173 0.768 0.098 1.037 1.963 0.669
19 -0.046 0.474 0.974 0.126 0.124 -0.056 1.186 0.757 0.063 1.190 1.951 0.684
20 -0.094 0.497 0.980 0.134 0.138 -0.307 1.210 0.766 0.062 1.230 2.260 0.572

Grouped -0.031 0.370 0.960 0.138 0.115 -0.140 1.170 0.758 0.097 1.056 1.931 0.680
32 15 -0.059 0.361 0.853 0.501 0.071 1.003 1.411 0.566 0.764 0.365 2.054 0.799

16 -0.077 0.379 0.760 0.636 0.090 1.225 1.520 0.556 0.958 0.371 2.553 0.599
17 -0.092 0.513 0.765 0.532 0.067 1.182 1.395 0.585 0.914 0.330 2.310 0.597
18 -0.249 0.285 0.737 0.234 0.033 0.389 0.937 0.554 0.306 0.395 0.910 1.476
19 -0.095 0.376 0.769 0.463 0.063 0.993 1.281 0.628 0.783 0.339 1.918 0.764
20 -0.050 0.285 0.726 0.579 0.071 0.998 1.421 0.509 0.782 0.365 2.042 0.747

Grouped -0.060 0.358 0.751 0.489 0.065 0.957 1.311 0.566 0.749 0.360 1.947 0.837
33 15 -0.159 0.432 0.864 0.103 0.037 0.214 0.924 0.715 0.184 0.521 0.951 1.970

16 -0.199 0.426 0.865 0.077 0.025 0.203 0.895 0.782 0.163 0.469 0.860 1.310
17 -0.618 0.408 0.877 0.086 0.034 0.110 0.873 0.691 0.110 0.639 0.716 1.761
18 -0.344 0.443 0.834 0.152 0.036 0.339 0.974 0.705 0.268 0.442 1.092 1.108
19 -0.121 0.635 0.856 0.136 0.043 0.239 0.968 0.669 0.206 0.540 1.014 1.245
20 -0.159 0.456 0.882 0.117 0.048 0.186 0.987 0.673 0.183 0.595 1.174 1.021

Grouped -0.146 0.438 0.863 0.114 0.037 0.215 0.939 0.704 0.186 0.537 0.971 1.289
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APPENDIX 2 (Continued)

Quadratic Quadratic
Sine (c = 0) (c = 0) Quadratic Quadratic

next interval next second next interval next second next interval

a b a b a b a b c a b c

2.104 0.075 -0.275 1.418 0.005 -0.009 -0.281 1.409 0.002 0.005 -0.019 -0.010
2.011 0.076 -0.227 1.421 0.006 -0.022 -0.230 1.428 -0.002 0.006 -0.032 0.048
1.987 0.080 -0.270 1.436 0.005 -0.010 -0.287 1.466 -0.009 0.005 -0.013 0.015
1.946 0.079 -0.249 1.416 0.005 -0.033 -0.263 1.436 -0.005 0.006 -0.057 0.126
2.010 0.081 -0.435 1.506 0.004 -0.002 -0.413 1.475 0.008 0.003 0.018 -0.103
2.034 0.077 -0.224 1.300 0.003 0.004 -0.168 1.222 0.022 0.002 0.020 -0.082
2.019 0.077 -0.281 1.416 0.005 -0.013 -0.272 1.405 0.003 0.004 -0.013 0.001
1.943 0.076 -0.252 1.449 -0.001 0.111 -0.184 1.303 0.077 -0.003 0.191 -0.398
1.896 0.076 -0.256 1.442 -0.003 0.154 -0.155 1.213 1.080 -0.006 0.225 -0.368
1.904 0.078 -0.272 1.410 -0.001 0.093 -0.210 1.290 0.048 -0.003 0.157 -0.327
1.962 0.078 -0.251 1.468 -0.001 0.116 -0.215 1.382 0.040 -0.004 0.202 -0.438
1.865 0.079 -0.268 1.504 0.001 0.089 -0.237 1.430 0.034 -0.002 0.176 -0.446
1.943 0.077 -0.209 1.443 0.002 0.091 -0.175 1.353 0.049 -0.002 0.181 -0.464
1.899 0.076 -0.251 1.453 -0.001 0.107 -0.198 1.334 0.056 -0.003 0.188 -0.409
2.976 0.083 -0.391 1.711 -0.012 0.331 -0.169 1.210 0.321 -0.012 0.359 0.098
2.857 0.084 -0.318 1.810 -0.016 0.420 -0.175 1.302 0.373 -0.015 0.408 0.059
2.688 0.088 -0.280 1.628 -0.016 0.393 -0.110 1.072 0.390 -0.016 0.403 -0.050
2.843 0.081 -0.675 1.588 -0.004 0.131 -0.120 0.868 0.209 -0.004 0.109 0.109
2.746 0.086 -0.361 1.689 -0.011 0.306 -0.276 1.460 0.130 -0.008 0.237 0.253
2.837 0.081 -0.385 1.786 -0.012 0.332 -0.127 1.038 0.460 -0.011 0.303 0.149
2.855 0.081 -0.404 1.700 -0.012 0.316 -0.162 1.148 0.312 -0.011 0.292 0.124
2.121 0.086 -0.438 1.351 -0.004 0.101 -0.156 1.011 0.086 -0.006 0.161 -0.158
2.265 0.084 -0.372 1.233 -0.004 0.099 -0.026 0.887 0.074 -0.006 0.145 0.238
2.078 0.082 -0.677 1.440 -0.002 0.076 -0.415 1.190 0.052 -0.004 0.108 -0.164
2.139 0.086 -0.390 1.365 -0.006 0.147 -0.059 0.902 0.139 -0.008 0.195 -0.245
2.157 0.079 -0.495 1.455 -0.004 0.128 -0.269 1.149 0.090 -0.006 0.177 -0.255
2.164 0.081 -0.362 1.358 -0.005 0.132 -0.192 1.099 0.087 -0.008 0.215 -0.425
2.172 0.083 -0.459 1.375 -0.004 0.116 -0.192 1.045 0.088 -0.006 0.168 -0.170


